The Best Designed Library You
Shouldn’t Use

Ahmed Charles
A9.COM



Overview

* Motivation
* Features of shared ptr

* Issues using shared ptr
— Potential uses of shared ptr
— Guidelines



Motivation

* Learned C++ at University/Microsoft
— Mostly wrote in other languages
— The C++ codebases didn’t use the STL very much

— Even then, there was one instance where someone used
shared_ptr unnecessarily.

* Moved to A9
— Heavier use of STL/Boost
— shared_ptr seems like a go to mechanism
— This overuse of shared ptr is probably common

* |nfluenced by:
— Herb Sutter - GOTW
— Sean Parent — GoingNative 2013 talk



Features of shared ptr

Lifetime management

Type erasure

— Allows having shared ptr<T> refer to a T which uses an
arbitrary allocation or deletion strategy

Polymorphism with non-virtual destructors

— It remembers the original type of the object

Pointer-like:

— Syntax

— Casting

— Declared using incomplete types

weak ptr allows breaking circular references/caching



Lifetime management

Basic use case
shared ptr<T> pl(new T);

Does this do the right thing?
shared ptr<void> p2(new int(5));

Can be stored in containers
vector<shared ptr<T>> vec;

Ultimately, it’s really easy to use and really
hard to write code that doesn’t work.



Type Erasure — Allocation/Deletion

Custom Allocator (arena)
arena a;
shared ptr<T> pl =
allocate shared<T>(a, args..);
shared ptr<T> p2 =
make shared<T>(args..)

Custom Deleter (FILE)
auto fclose deleter = []J(FILE *f)
{ fclose(f); }
shared ptr<FILE> file(fopen("name", "r"),
fclose deleter);



Polymorphism with non-virtual
destructors

class B { virtual void f() {}
protected: ~B() {} };
class D : public B {};

shared ptr<B> p = make shared<D>();
std: :shared ptr<D> p2 =
std: :dynamic_pointer cast<D>(pl);



Pointer-like - Syntax

 shared ptr has *, ->, conversion to bool, !
shared ptr<T> p = make_shared<T>();
if (p) T t = *p;
if (!'p) throw exception("impossible");
else p->some_function();
assert(p != nullptr);



Pointer-like - Casting

« static pointer cast, dynamic _pointer cast

and const_pointer cast:
shared ptr<const B> pl = make_shared<D>();
shared ptr<const D> p2 =

static_pointer cast<const D>(pl);
shared ptr<const D> p3 =

dynamic_pointer cast<const D>(pl);
shared ptr<B> p4 = const pointer cast<B>(pl);
shared ptr<D> p5 =

const_pointer cast<D>(

dynamic_pointer_ cast<const D>(pl));



Pointer-like — Incomplete types

class C;
shared ptr<C> p;
class C {};

p = make shared<C>();



weak ptr — Circular references

* Imagine a node type which tracks
it’s parent:
struct Node {
shared ptr<Node> left, right;
weak ptr<Node> parent;

s

root.reset();
* weak_ptr will break the circular references.



weak ptr —Cache

* Herb Sutter’s Favorite C++ 10-Liner:
shared ptr<widget> get widget(int id) {

¥

static map<int, weak ptr<widget>> cache;
static mutex m;

lock guard<mutex> hold(m);

auto sp = cache[id].lock();

if (!sp) cache[id] = sp = load widget(id);
return sp;

widget& instance() {

¥

static widget w;
return w;



Issues using shared ptr

* Only use shared ptr when there is
ambiguous ownership

* shared ptr’s prevent local reasoning about
code

* When used in interfaces, shared_ptr’s
restrict users to a specific lifetime
management strategy



Ambiguous ownership
sharing data across threads

auto ic = make_shared<indexed corpus>(data);
vector<future<void>> threads;
for (int 1 = 0; 1 !=4; ++1) {
threads.push back(async([ic] {
engine(*ic).search();
1))
}

for (auto t : threads) {
t.get();
}



Local reasoning

* Consider the following:
shared ptr<const element> sp =
document.get element(9);
cout << *sp << endl;
document.load(file path);
cout << *sp << endl;

* Does this print the same thing twice or not?



Restricting users of interfaces

Consider the following definition:
string name(shared ptr<employee> e)
{ return e->name; }

What restrictions does this imply?

Alternative:
string name(const employee& e)
{ return e.name; }

shared_ ptr parameters imply sink functions



Potential places to use shared_ptr

Local scope
Global/Static scope
Member variable
Function parameter

Function return value



Guidelines — Local scope

 shared _ptr’s are only really useful at local
scope as an intermediary step before being
given to a sink function or assigned to a non-

local variable
shared_ptr<data> p = get data();
data_processor proc(p);

* Prefer using values as locals instead of doing
allocations



Guidelines — Global/Static scope

* Globals should generally be avoided

* shared ptr’s are effectively globals
— They do not allow local reasoning



Guidelines — Member variable

 Shared data
— Use shared ptr

e Normal members

— Prefer storing by value

class Bad { shared ptr<string> name; };
class Good { string name; };



Guidelines — Member variable

* Polymorphic members

— Use unique_ptr with an explicit copy in the copy
constructor or shared ptr to const

class Bad { shared ptr<B> base ; }
class Good {
Good(const Good& o)
: base (o.base ->copy()) {}
unique_ptr<B> base_;

¥

class Best { shared ptr<const B> base ; }
— Good and Best are regular types.



Guidelines — Function parameters

Read only parameters
— const reference

Modified parameters
— Non-const reference

Optional parameters
— Raw pointers to const

Optional Modified parameters

— Raw pointers to non-const



Guidelines — Sink Function Parameters

Sink functions make a copy of their parameter
and store it

Sink functions

— Pass by value
Sink functions with optional data
— boost/std: :optional by value

Sink functions with shared data
— Use shared ptr



Guidelines — Function return value

e Factory functions
— Prefer to return by value
— If it is polymorphic, use unique ptr

* If it needs to be shared later, it can be transferred to a
shared ptr

* Singletons
— Return by reference instead

 Ambiguous lifetimes (e.g. multithreading)
— Use shared ptr



Thanks & Questions

* Sean Parent’s talks at GoingNative

— http://channel9.msdn.com/Events/GoingNative/
2013/Cpp-Seasoning

— http://channel9.msdn.com/Events/GoingNative/
2013/Inheritance-Is-The-Base-Class-of-Evil

* Herb Sutter’s GOTW on shared_ptr
parameters

— http://herbsutter.com/2013/06/05/gotw-91-
solution-smart-pointer-parameters/




